If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-20t-5=0
a = 1; b = -20; c = -5;
Δ = b2-4ac
Δ = -202-4·1·(-5)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{105}}{2*1}=\frac{20-2\sqrt{105}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{105}}{2*1}=\frac{20+2\sqrt{105}}{2} $
| -8=x^2-9x+14 | | -2(-4y)=19 | | 1/2x^2-2x-112=0 | | X^2-4x-224=0 | | 1/2x(x-2)=112 | | |3x-6|=-21 | | 2x+(-4)=5 | | Y=3.50x | | 3a-8=3(a+1)+11a+1 | | 2a-13=5(a+1)+16a+2 | | 6c-3c=10 | | 2x-7=2(5)-7 | | -13=5b+7 | | -5x2+10x=0 | | (2x+3)*51/21=34 | | 120=x(x+8) | | (2x+3)*23/7=34 | | 8y-6=2y+1 | | 4x+2(3x-5=30 | | a-1−2=2a-3−5 | | 3(5x/6-8=7 | | 7x-3=5(x+2)-4 | | 5n=180n-360 | | X+95=6x+45 | | 3h-8=10 | | 6=6(x-3)-4 | | 0.2v=2.1;10 | | -2x^2+27=19 | | 2x+19=4-3x | | y2+12y+4=0 | | 5z=1z+16 | | 5x+(x/2)=85 |